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Abstract. We have constructed the bag model having a central constant color field. The motion of the
quark is studied in this bag and the Dirac equation is solved for it. The energy spectrum found has a
branching due to the interaction of the quarks with the color background. It is pointed out that this
model can be applied for taking into account, in the mass spectrum of the hadrons, the coupling of the
constituent quarks with the gluon condensation as the interaction with the color background.

1 Introduction

There are a constituent quark model and some bag models
describing hadron states by means of the dynamics and
kinematics of the constituent quarks [1–4]. These models
take into account the gluon and quark condensation ex-
isting in the QCD vacuum [5] as a medium in which the
constituent quarks move and the interaction of these quarks
with condensates are reduced acquiring additional mass by
them. The vacuum average values of the chromofield com-
ponents 〈Ea Ea〉 and 〈Ha Ha〉 of the gluon condensate in
the QCD vacuum were estimated in [5–7]. These estima-
tions are used for the study of vacuum energy and structure
of the bag models, which are connected with the bag con-
stant [8,9]. Here we aim to consider the gluon condensate
as a color background field and take into account the cou-
pling of the constituent quarks with it as an interaction
with the external color filed. Naturally, such a coupling
will arise in the constituent quarks energy spectrum which
is not consisting in only acquiring an additional mass term
and will result in a splitting of this spectrum. In order to
provide the rotational invariance we propose that spatial
components of this background are equal and constant for
simplicity. The background field thus defined will play the
role of a central constant color force. In order to realize
our proposals we shall construct a model like Bogolubov’s
bag model [3], but having a constant color field in the cen-
ter. According to this model the colored constituent spinor
particle moves in the constant central color field and its mo-
tion is limited by an infinite spherical well. The condition
of an infinite spherical well is imposed in order to ensure
the confinement property of the colored constituents. The
Dirac equation should be solved for this model under this
boundary condition on wave functions of the constituent
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quark. For this aim we can use the constant non-abelian
vector potentials found in [10] and the approach used for
solving the Dirac equation in the field given by such a
kind of potential [11]. This will give us the distribution
of the constituent quarks inside the bag and their energy
spectrum, which will contain a contribution of its color
and spin interactions with the background field. Finally,
the components of the external field can be identified with
the ones of the gluon condensate, and the estimations for
the color components of the gluon condensation 〈Ea Ea〉
and 〈Ha Ha〉 can be settled in the energy spectrum found
for the quark. This will make this spectrum useful for a
comparison with the spectra of the hadron states.

2 The Dirac equation

For a study of the problems in a constant non-abelian
background field it is convenient to introduce constant
non-commuting vector potentials1. Let us choose the vec-
tor potentials A(a)

µ in the framework of the SUc(3) color
symmetry group in the following way:

A
(a)
0 =

√
τ1, A

(a)
j =

√
τδja (j = 1, 2, 3) for a = 1, 2, 3 ,

A(a)
µ = 0 for a = 4, 5, 6, 7, 8 , (1)

where τ, τ1 are constants and δia is the Kronecker symbol.
The corresponding field strength tensorF (a)

µν =gfabcA
(b)
µ A

(c)
ν

has the following chromoelectric (E(a)
j ) and chromomag-

netic (H(a)
j ) components:

E(1)
x = 0, E(2)

x = g
√
ττ1, E(3)

x = −g√ττ1 ;

H(1)
x = gτ, H(2)

x = 0, H(3)
x = 0 ,

1 See [11] and references therein.
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E(1)
y = −g√ττ1, E(2)

y = 0, E(3)
y = g

√
ττ1 ;

H(1)
y = 0, H(2)

y = gτ, H(3)
y = 0 ,

E(1)
z = g

√
ττ1, E(2)

z = −g√ττ1, E(3)
z = 0 ;

H(1)
z = 0, H(2)

z = 0, H(3)
z = gτ . (2)

Here g is the color interaction constant. All other color
components of F (a)

µν are zero for a = 4, 5, 6, 7, 8. From (2)
we see that the field (1) has equal magnitude of spatial com-
ponents E2

j = E(a)
j E(a)

j = 2g2ττ1 and H2
j = H(a)

j H(a)
j =

g2τ2, which are constant as well. So, in ordinary space the
strength vectors of the chromomagnetic and chromoelec-
tric fields are2:

�H =
√

3gτ �n, �E = g
√

6ττ1 �n , (3)

where �n is the unit radius vector in ordinary space.
The Dirac equation for a colored particle minimally

coupled with the external color field (1) can be written
as follows:

(γµPµ −M)Ψ = 0 , (4)

where Pµ = pµ + gAµ = pµ + gA
(a)
µ

λa

2 , and the λa are the
Gell-Mann matrices describing the particle’s color spin.
Equation (4) can be written in terms of Majorana spinors
φ and χ,

Ψ =
(
φ

χ

)
,

in a form more suitable for us:(
σjPj

)2
ψ =

(
P 2

0 −M2)ψ , (5)

where the Pauli matrices σi describe a particle’s spin. Here
and afterwards ψ means φ or χ. The two spin components
of the Majorana spinors

ψ =
(
ψ1

ψ2

)

transform under the fundamental representation of the
color group SUc(3). That means that each spin compo-
nent of the wave function ψ1,2 has three color components
describing the color states of a particle:

ψ1,2 =



ψ

(1)
1,2

ψ
(2)
1,2

ψ
(3)
1,2


 .

Writing down the expressions of Pµ and A(a)
µ in (5) we

get an explicit form:(
�p2 +M2 +

3g2τ

4
+ gτ

1
2λapa − g2τ

2
σaλa

)
ψ

2 We assume the chromoelectric field has negative projections
in color space.

=
(
E2 − gτ

1
2
1 λ

aE +
3g2τ1

4

)
ψ , (6)

where E is the energy of particle3. Equation (6) turns into
the following system of differential equations for the color
components ψ(a)

1,2 :




(
A+ gτ

1
2 P3 − 1

2g
2τ
)
ψ

(1)
1 + gτ

1
2 (P1 − iP2)ψ

(2)
1 = 0 ,(

A− gτ
1
2 P3 + 1

2g
2τ
)
ψ

(2)
1 + gτ

1
2 (P1 + iP2)ψ

(1)
1

= g2τψ
(1)
2 ,(

�p2 +M2
)
ψ

(3)
1 = E2ψ

(3)
1 ,(

A+ gτ
1
2 P3 + 1

2g
2τ
)
ψ

(1)
2 + gτ

1
2 (P1 − iP2)ψ

(2)
2

= g2τψ
(2)
1 ,(

A− gτ
1
2 P3 − 1

2g
2τ
)
ψ

(2)
2 + gτ

1
2 (P1 + iP2)ψ

(1)
2 = 0 ,(

�p2 +M2
)
ψ

(3)
2 = E2ψ

(3)
2 ,

(7)

where the operators A and Pj denote A = �p2 + M2 +
3
4g

2 (τ − τ1)−E2, Pj = pj +
√

τ1
τ E.The equations in the

system (7) mix the different states ψ(a)
1,2 and we need sepa-

rated equations for each of these states. From the system (7)
we find that the equations for all states ψ(i)

1,2 (i = 1, 2) have
the same form:[(

A− g2τ

2

)2

− g2τ �P2

]

×
[(

A+
g2τ

2

)2

− g2τ
(
�P2 + g2τ

)]
ψ

(i)
1,2 = 0 , (8)

which possesses rotational invariance. Since the operators
A and Pi commute, the operator in first square bracket
commutes with the second one. This allows us to divide (8)
into two equations, both keeping rotational invariance:[(

A− g2τ

2

)2

− g2τ �P2

]
ψ

(i)
1,2 = 0 , (9)

[(
A+

g2τ

2

)2

− g2τ
(
�P2 + g2τ

)]
ψ

(i)
1,2 = 0 . (10)

Equations (9) and (10) can be solved separately and the set
of solutions (8) will consist of the solutions of (9) and (10).
Let us consider (9). Acting on this equation by the operator
�P2 we get the same equation for the function ξ(i)1,2 = �P2ψ

(i)
1,2

as for ψ(i)
1,2, i.e.,

[(
A− g2τ

2

)2

− g2τ �P2

]
ξ
(i)
1,2 = 0.

3 Since the field (1) does not depend on time, the states
are stationary.
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This means that the functions ξ(i)1,2 and ψ(i)
1,2 differ only by

a constant multiplier k′2 : ξ(i)1,2 = k′2ψ(i)
1,2 or

�P2ψ
(i)
1,2 = k′2ψ(i)

1,2 . (11)

In other words, since the operator �P2 commutes with the
square bracket operator in (9), they have the same set of
eigenfunctions ψ(i)

1,2. The same claim is in order for the
operator �p2:

�p2ψ
(i)
1,2 = −∇2ψ

(i)
1,2 = k2ψ

(i)
1,2 . (12)

Thus, we can solve (12) instead of (9). Obviously, (12)
keeps the rotational invariance property of the equivalent
equation (9) and so is easily solved in a spherical coordinate
system using the separation ansatz [12]

ψ
(i)
1,2 (�r) = R(r) · Y m

l (θ, ϕ) . (13)

Here r =
√
x2 + y2 + z2, l and m are the orbital angular

momentum and chromomagnetic quantum numbers, and
θ, ϕ are the polar and azimuthal angles, respectively. The
spherical functions Y m

l (θ, ϕ) are expressed by means of
the Legendre polynomials P |m|

l (cos θ) :

Y m
l (θ, ϕ) =

√
(2l + 1)

4π
(l− | m |)!
(l+ | m |)!P

|m|
l (cos θ) eimϕ , (14)

and define the s, p, d, f, . . . orbitals well-known in quantum
mechanics. The equation for the radial part R(r) is as
used in many quantum mechanical problems possessing
rotational invariance [11,12]:

d2

dr2
R(r) +

2
r

d
dr
R(r) +

(
k2 − l (l + 1)

r2

)
R(r) = 0 . (15)

With the notation Q (r) =
√
rR(r) (15) turns into Bessel’s

equation for Q (r):

Q′′ (r) +
1
r
Q′ (r) +

(
k2 −

(
l + 1

2

)2
r2

)
Q (r) = 0 . (16)

The function R(r) must be finite on r → 0. This means
that for the solution of (15) we should choose the Bessel
function of the first kind:

Rl(r) =
Cl

k
√
r
Jl+1/2 (kr) . (17)

Thus, we conclude that the states obeying (9) are the s,
p, d, f, . . . orbitals corresponding to different values of
the quantum numbers l and m and the motion of the
constituent quarks in any color and spin state takes place
on these orbitals, which are the same for all these states.
In other words, the angle distribution of quarks inside the
bag is the same for any color and spin state and the same,

for instance, as the ones of electrons in atoms4. The radial
distribution of these quarks is the same as the ones of
freely moving particles enclosed in a sphere [12]. Since the
external field (1) does not depend on r, we have obtained
the same expression for the solutions ψ(i)

1,2 (�r) as for a freely
moving particle enclosed in a sphere, differing only by the
expression of the k2 constant.

3 The energy spectrum

Using (3) the operator �P can be written in the follow-
ing form:

�P = �p+
E√
6gτ

�E .

Then the action of the �P2 operator will be

�P2ψ
(i)
1,2 = �p2ψ

(i)
1,2 +

2E√
6gτ

∣∣∣�pψ(i)
1,2

∣∣∣ ∣∣∣�E∣∣∣ cosα+
τ1
τ
E2ψ

(i)
1,2 ,

(18)
where

∣∣∣�pψ(i)
1,2

∣∣∣ means the directional derivative [12]

∣∣∣�∇Φ∣∣∣ =
√(

∂Φ

∂x

)2

+
(
∂Φ

∂y

)2

+
(
∂Φ

∂z

)2

.

Here α is the angle between the momentum vector �∇ψ
and the chromoelectric field vector �E . Since the particle
periodically moves on the orbitals the angle α varies in
symmetric limits. That means that the average value of
cosα during one period is zero. Actually, the term which
contains cosα in (18) is proportional to the work done by
the chromoelectric field on the particle in its motion in
this field. It is easily seen that the net work of this field
during one period is zero, while its momentary value is not
zero5. So, if we average (9) and (10) over the time during
one period, the term proportional to cosα will drop out.
We shall find the average value of the energy spectrum6.
Therefore, the average value of (18) during one period is
equal to

�P2ψ
(i)
1,2 = −∇2ψ

(i)
1,2 +

τ1
τ
E2ψ

(i)
1,2 = k2ψ

(i)
1,2 +

τ1
τ
E2ψ

(i)
1,2

= k′2ψ(i)
1,2 . (19)

4 Since constituents in this model are considered to be non-
interacting with each other, for the two-particle case we have
the angle distribution of quarks in mesons. This distribution
will have the same shape as the ones in a two-electron atom.
In this sense mesons are like the hydrogen atom, differing only
by the radial distribution in the constant field approximation.

5 We observe the same situation as in an electron’s motion
in the field of a nucleus.

6 For “s” orbitals cos α = 0, since the momentum and chro-
mofield vectors are perpendicular on every moment in time.
So, the momentary value of energy coincide with its average
value for these orbitals.
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If we take (19) and (12) into account, we obtain from (9)
the following equation for the constant k2:

(
k2)2 + 2k2

(
M2 − E2 +

1
4
g2 (τ − 3τ1) − 1

2
g2τ

)

+
(
M2 − E2 +

1
4
g2 (τ − 3τ1)

)2

− g2τ1E
2 = 0 ,

from which one finds the relation between the constant k2

and the energy spectrum E2:

(
k2)

1,2 =

(√
E2
(
1 +

τ1
τ

)
−M2 +

3
4
g2τ1 ± 1

2
gτ

1
2

)2

−E2 τ1
τ
. (20)

Now we should impose the boundary condition meaning
the confinement property of the constituent quark on its
wave function. Since (12) is the Laplace equation we can
impose the Dirichlet boundary condition ψ(i)

1,2 (r = r0) = 0
or Rl(r0) = 0, which means that we enclose the particle
motion by a sphere with a radius r0. Here r0 agrees with
half of the hadron size. This boundary condition establishes
the following relation between the values of k and the zeros
α

(N)
l of the Bessel function Jl+1/2 (kr) :

kr0 = α
(N)
l , (21)

which means the quantization of the k values. According to
the relation (20) the energy spectrum of particle is quan-
tized as well. Plugging (21) in (20), we find the first two
branches of the quantized energy levels of the spectrum:
(
E

(N)
l

)2

1,2
=



√√√√(1 +

τ

τ1

)(
α

(N)
l

r0

)2

+ M2 +
1
4
g2 (τ − 2τ1) ∓ 1

2
gτ

1
2
1




2

− τ

τ1

(
α

(N)
l

r0

)2

. (22)

In (22) and (21)N labels the sequence of zeros of the Bessel
function N = 1, 2, 3, . . . and is called the radial quantum
number [12]. So, the value of the angular momentum l
determines the series of the energy spectrum of the par-
ticle and the radial quantum number N determines the
energy levels in this series. Thus, the finiteness condition
imposed on the motion of the particle, because of its con-
finement property, of course, leads to the quantization of
the energy spectrum.

As is seen from (21) the constant k gets the same values
for the various branches

(
k2
)
1,2:

k
(N)
l =

α
(N)
l

r0
.

The radius a of the turning point of the particle could
be found from (15) using the maximum condition on the
radial function R′(a) = 0 and is equal to

a
(N)
l = r0

√
l (l + 1)

α
(N)
l

.

These radia, as the energy spectrum and k, are quantized
and are determined by the quantum numbers l and N ;
they do not depend on the field intensities. So, there is no
difference in the values of the radia with the case of motion
in a pure chromomagnetic field [11].

We have solved (9) and found the corresponding two
branches of the energy spectrum. In the same manner we
can solve (10) too. For this equation the function ξ(i)1,2 de-

notes ξ(i)1,2 =
(
�P2 + g2τ

)
ψ

(i)
1,2 and the following equations

are equivalent to (10):

(
�p2 + g2τ

)
ψ

(i)
1,2 = K2ψ

(i)
1,2,

(
�P2 + g2τ

)
ψ

(i)
1,2 = K ′2ψ(i)

1,2 .

(23)
The relation between the expressions of k andK is obvious:
K2 = k2 + g2τ,K ′2 = k′2 + g2τ and the relation between
K and K ′ is analogous to (19):

K ′2 = K2 +
τ1
τ
E2 . (24)

Taking (23) and (24) into account, we get from (10) an
algebraic relation between k2 and E2:

(
k2 +M2 +

3
4
g2 (τ − τ1) − E2 +

g2τ

2

)2

− g2τ
(
k2 +

τ1
τ
E2 + g2τ

)
= 0 . (25)

Of course, the solution of (23) is (13) with (14) and (17).
The Dirichlet boundary condition Rl(r0) = 0 applies to
(10) too. In the result of the quantization (21), from (25)
we find the other two branches of the energy spectrum:

(
E

(N)
l

)2

3,4
=



√√√√√(1 +

τ

τ1

)(α(N)
l

r0

)2

+ g2τ


+M2 +

1
4
g2 (τ − 2τ1)

∓ 1
2
gτ

1
2
1




2

− τ

τ1


(α(N)

l

r0

)2

+ g2τ


 . (26)

As seen from (22) and (26), the energy spectrum of the
quark contains the contribution of the quark’s interaction
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with the background field and this energy spectrum is quan-
tized due to the finiteness of the motion of the quark.
Another difference with the existing bag models [1–4] is
the branching of the energy spectrum, which is the result
of the color and spin interaction of the particle with the
background field and is not determined by these quantum
numbers. We have four color and spin states ψ(i)

1,2 of the

quark and four energy branches (E(N)
l )1,2,3,4, but we do

not have a one-to-one correspondence of these states and
the branches. All these states could get energy from any of
these branches. This is the difference between the branch-
ing of the spectrum and the splitting levels. In fact, here
we have obtained the branching of the energy spectrum
instead of splitting levels. Such a branching takes place in
a pure chromomagnetic field case [11, 14, 15] and is con-
nected with the existence of a conserved operator, which
contains the color spin λa

2 and the spin σj

2 operators. There
is no need to introduce the color states in the bag models,
which do not deal with the color interaction of the particle
with the background, and so, this branching of the energy
spectrum does not occur in those models. Note that the
energy levels in these branches are determined only by the
quantum numbers l and N , and so they are 2l + 1-fold
degenerate in the quantum number m, which occurs in the
motion in any central field.

The states ψ(3)
1,2 correspond to the states of a colorless

particle, and (12) for them
(
k2 = E2 −M2

)
has the solu-

tion (13) with (15) and (17) too. The energy spectrum of
these states is

(
E

(N)
l

)2

5,6
=

(
α

(N)
l

r0

)2

+M2 . (27)

As an application of this model we can propose that the
central color field is the background field of gluon conden-
sation in the QCD vacuum. Then we can use the estimation
for vacuum average values of the chromoelectric and chro-
momagnetic field intensities of this condensation [6, 7]:

〈0 | g2�Ea�Ea | 0〉 � − (700 MeV)4 ,

〈0 | g2 �Ha �Ha | 0〉 � (700 MeV)4 .

Identifying these estimates with the field intensities in our
model g2�E2 = 6g4ττ1 and g2 �H2 = 3g4τ2, we see that the
constant τ1 should be taken equal to τ1 = − 1

2τ . This en-
ables us to evaluate the g2τ constant g2τ ∼= 1√

3
(700 MeV)2.

Then the energy spectra (22) and (26) simplify as follows:

(
E

(N)
l

)2

1,2
= 2

(
α

(N)
l

r0

)2

−



√√√√(α(N)

l

r0

)2

− 1
2
g2τ −M2 ∓ 1

2
√

2
gτ

1
2




2

,

(
E

(N)
l

)2

3,4
= 2

(
α

(N)
l

r0

)2

+ 2g2τ (28)

−



√√√√√

(α(N)

l

r0

)2

+ g2τ


− 1

2
g2τ −M2 ∓ 1

2
√

2
gτ

1
2




2

.

In order to estimate the quark’s energy using the spec-
tra (28) and (27) we can set in them r0 = R � 1, 7 fm [3]
or another estimation for the hadron’s size. Since the con-
stituent quarks in the framework of this model are con-
sidered to be non-interacting with each other, the energy
of any two- or three-quark system will be the sum of the
energy of the separate quarks. As an examination of this
model, the total energy of the bag can be compared with
the corresponding hadron state. It should be noted that
the selection rule ∆m = 0,±1 and ∆l = ±1 for quan-
tum transitions between the energy levels, which exists in
central field problems [12], occurs for this problem as well
and is useful for a calculation of the energy emitted by the
excited bag. There is not a preferred rule on the energy
branches for this calculation. A comparison of the energies
emitted by the bag and by the hadron could serve as a
another verification of the role of the gluon condensate as
a constant central color field.
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